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Abstract   
        In this paper, the homotopy perturbation method (HPM) is developed to solve the 
focusing Manakov system of coupled nonlinear Schrödinger equations in one space 
variable and two space variables. The advantages of this method are, fast convergent, 
does not require discretizations of space-time variables and does not require to solve the 
resultant nonlinear system of discrete equations. Numerical examples are shown to 
demonstrate the accuracy and capability of the method. The accuracy of the method is 
verified by ensuring that the conserved quantities remain almost constant.  
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Introduction  
 
      In recent years, a growing interest towards the applications of the homotopy technique 
in nonlinear problems has been devoted by engineering practice  [13].  The HPM , which 
proposed by J. H. He (see [10]-[16] and the references sited therein),  have several 
attractive properties (see [1-3], [27]),  it is a fast convergent method, does not require 
discretizations of space-time variables and does not require to solve the resultant 
nonlinear system of discrete equations. The main advantage of HPM is that it can be 
continuously deform a simple problem easy to solve into difficult problem under study. 
Also, Homotopy perturbation method (HPM) can overcome the difficulties arising in 
calculation of Adomian polynomials in Adomian decomposition method (see [5], and the 
references sited therein). On the other hand  the focusing Manakov system in one space 
variable and two space variables are an integrable system of coupled nonlinear 
Schrödinger equations (see [4]-[6-9], [17-19], [22-26]) which models the propagation of 
the average fields of a polarized wave in a randomly birefringent optical fiber. The 
qualitative nature of the unstable manifolds of linearly unstable plan wave solutions has 
been examined in details in [6,7]. For more details on the coupled nonlinear Schrödinger 
equations and the focusing Manakov system see [4], [17],   and the references therein. For 
high order methods for solving coupled nonlinear partial differential equations see [20-
21], [28] and the references sited therein     
 
In this paper we develop HPM to solve the Manakov system in the one-dimensional of 
the following form: 
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              0tRx,  0 u )2|v|  2|u| ( xxu
2
1

tu i , ≥∈=+++ q                                     (1)                       

                    0,  v)2|v|  2|u|  ( xxv
2
1

t vi =+++ q                                                          (2) 

With an initial  conditions (x)0vv(x,0)(x),0uu(x,0) ==  and homogenous boundary 
conditions. Note that the assumption of homogenous boundary conditions is for simplicity 
only and is not essential: the method can be easily designed for arbitrary domain and non- 
homogenous boundary conditions. The two-dimensional version of Manakov system is  

            0t,2Ry)x,(,  0 u )2|v|  2|u| ( utu i ≥∈=++∆+ q                                         (3) 

            , 0  v)( vt vi 2|v|  2|u| =+∆+ +q                                                                   (4) 

with an initial conditions y)(x,vy,0)v(x,y),(x,uy,0)u(x, 00 ==  and homogenous 
boundary conditions, where yyxx: ∂+∂=∆  is the Laplacian operator in two-
dimensional. Both systems (1)-(2) and (3)-(4) were first analyzed in [14] (and hence are 
often referred to as the Manakov system). It is known that the Manakov system is 
completely integrable, i.e., they can be solved by the inverse scattering method [22]. 
There has been a lot of previous work on the solitary wave equations to system (1)-(2) 
under the infinite boundary condition 0v0,u →→ at ∞→|x|  (see [17]-[20] and 
the references therein). An important goal of the present work is to show that the 
developed homotopy perturbation method (HPM) is applicable to solve numerically the 
focusing   Manakov system, i.e.,   1+=q , in one space variable and two space variables.  
     
 
2. Analysis of the Homotopy Perturbation Method 
     
      In this section, we present the analysis of the homotopy perturbation method for 
solving the following non-homogeneous, nonlinear coupled system of partial differential 
equations 
                     ,  t)f(x,) t)v(x,t),u(x, (1Nt)u(x,1L =+                                                        (5) 

                      , t)g(x,) t)v(x,t),u(x, (2Nt)v(x,2L =+                                                 (6) 

where  2L  , 1L are linear differential operators with respect to time t  and   2N ,1N  are 
non-linear operators and t),g(  , t),f( xx are arbitrary (smooth) nonlinear given functions. 
 
According to the homotopy perturbation method, we construct the following simple 
homotopy 
     0] t)f(x,) t)v(x,t),u(x, ( 1Nt)u(x, 1L [ pt)u(x, 1L p)-(1p)v,(u,1H =−++= ,         (7)                               

     , 0] t)g(x,) t)v(x,t),u(x, ( 2Nt) v(x,2L [ pt) v(x,2L p)-(1p)v,(u,2H =−++=      (8) 

or       
         0] t)f(x,) t)v(x,t),u(x, ( 1N [ pt)u(x,1Lp)v,(u,1H =−+= ,                                  (9)        

         , 0] t)g(x,) t)v(x,t),u(x, ( 2N [ pt)v(x,2Lp)v,(u,2H =−+=                              (10) 
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Where 1] [0,p∈  is an embedding parameter. In case p=0 ,  equations (9) and (10)  
become  linear equations of the form 0t)u(x, 1L =  and 0t) v(x,2L =  which can be  

easily solved ; also  when p=1 , equations (9) and (10)  turns out to be the original 
equations (5) and (6). In the view of homotopy perturbation method, we use the 
homotopy   parameter  p  to expand the solutions as follows: 

                   .  .  .3u3p2u2p1pu0ut)u(x, ++++=                                                   (11)    

                   .  .  .3v3p2v2p1pv0vt)v(x, ++++=                                                    (12)    

The approximate solutions can be obtained by setting 1p =  in equations (11) and (12): 
               .  .  .3u2u1u0ut)U(x,t)u(x, ++++=≅                                                    (13)    

              .  .  .3v2v1v0vt)V(x,t)v(x, ++++=≅                                                      (14)    

  Substituting from (11)-(12) into (9)-(10) and equating the terms with the identical 
powers of p, we can obtain a series of linear equations. These linear equations are easy to 
solve by using Mathematica software or by setting a computer code to get as many 
equations as we need in the calculation of the numerical as well as explicit solutions.  
   
3. Application and Numerical Results  
 
         In this section  the HPM is applied for solving the focusing Manakov system in one 
space variable and then for two-space variable. Numerical results are given, also the 
accuracy of the method is verified by ensuring that the conserved quantities. 
 
3.1 Focusing Manakov System in one Space Variable 
 
     Consider the system (1)-(2) in the region 0][t]xx[xR RL >×<<=  with its boundary 

R∂  which consists of the ordinates RL xx,xx ==  and the axis 0t ≥ . According to the 
homotopy perturbation methodology, we construct following simple homotopies:                                            

             0 ]u  )2|v|  2|u| (  ixxu i
2
1

[- ptu =+−+ q ,                                                (15)                       

             0 ]  v)2|v|  2|u| (  ixx vi
2
1

[- pt v =+−+ q                                                      (16)  

where [0,1]p∈ is an embedding parameter, we use it to expand the solutions in the 
following form: 

                 .  .  .3u3p2u2p1pu0ut)u(x, ++++=                                                     (17) 

                .  .  .3v3p2v2p1pv0vt)v(x, ++++=                                                       (18) 

 
The approximate solution can be obtained by setting 1p =  in equations (17)-(18): 
     .  .  .3u2u1u0ut)u(x, ++++= and     .  .  .3v2v1v0vt)v(x, ++++=              (19) 

Now substituting from (17)-(18) into (15)-(16) respectively, and equating the terms with 
the identical powers of p, we can obtain series of linear equations. These linear equations 
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are easy to solve by using Mathematica software or by setting a computer code to get as 
many equations as we need in the calculation of the numerical as well as explicit 
solutions.  Here we only write the first few linear equations: 

  , 0t)(x,0u   : 0p =                                                                                                       (20-i) 

         0t)(x,0v = ,                                                                                                        (20-ii)  

 , )
2

0v
2

0u (0u i0xxu i
2
1t)(x,1u   : 1p ++=                                                            (21-i)         

         , )
2

0v
2

0u (0 vi0xx vi
2
1t)(x,1v ++=                                                          (21-ii)  

  , )
2

0v
2

0u (1u i)1v0v21u 0u 2(0u  i1xxu i
2
1t)(x,2u  : 2p ++++=                  (22-i)       

        , )
2

0v
2

0u (1 vi)1v0v21u 0u 2(0 vi1xx vi
2
1t)(x,2v ++++=             (22-ii)                

Solutions of equations (20) can be calculated by using the following initial conditions 
[22] : 

,  x))α2cos( ε(10bv(x,0)t)(x,0   v          ,  x))α2cos( ε(10au(x,0)t)(x,0u −==−==

 Where 00 , ba are the initial amplitudes of the two perturbed periodic waves,  
respectively and 1<<ε  is a small parameter and it represents the strength of the 
perturbation and α  is the wave number of the perturbation. Then, we can derive  
solutions of (21) in the following form :        

 

, ) x))α2cos( ε(-1 )2
0b2

0q(a- x)α2εcos(2(2αt 0a i            

0
dt)]

2
0v

2
0u (0u i0xxu i

2
1[t)(x,1u

3++=

∫ ++=
t

   

3

2 21v (x,t) [ i v i v ( u v )]dt1 0xx 0 0 020
2 2 2            i b t (2α ε cos( 2α x)-q(a b ) (-1 ε cos( 2α x)) ) .0 0 0

t
= + +∫

= + +

 

Therefore, the complete approximate solution can be readily obtained by the same 
iterative process. Now, to illustrate the advantages and the accuracy of the homotopy 
perturbation method for solving focusing Manakov system in one space variable, we have 
applied the method by using the first order perturbation only, i.e. the approximate 
solutions are   
            , )tx,(1u)tx,(0ut)U(x,t)u(x, +=≅                                                                   (23) 

            )tx,(1v)tx,(0vt)V(x,t)v(x, +=≅                                                                     (24)  

  
The numerical simulations are represented in Figure (1) for the approximated wave 
solutions | t)u(x, | which represented in the top, and | t)v(x, |, which  represented  in the 
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bottom of the figure, at different time values from 0t =  to 02t =  in the region 
115x0 ≤≤ . The numerical results are obtained by using first perturbation term of 

equation (19)   where ,     ,0   , 0 0.05  0.1  08.0 === αba 0.05 =ε   
 We achieved a very good approximation for the solution of the system.   It is evident that 
the overall errors can be made smaller by adding new terms from the iteration formulas. 
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Figure 1:  Long-time evolution of the wave solution |u(x, t)| and |v(x, t)| 
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3.2. Conserved quantities in one space variable  
 
          In order to verify  whether the proposed methodology lead to higher accuracy, we 
will use the same procedure as in Sun and Qin [19] which emphasize that a good 
numerical scheme should have excellent long-time numerical behavior, as well as energy 
conservation property.  To monitor the accuracy of the homotopy perturbation method, 
we consider the following two conserved quantities, 

                        ∫
−

=
S/2

s/2
dx2|t)u(x, |  E(u)       and        

∫
−

=
S/2

s/2
dx2|t) v(x,|  E(v)    

Where παπ 40)/2( ==s  ( for 0.05=α  ) is the spatial period of the solution [21].  
Table 1 shows  E(u)  and E(v) for various times.  The  nearly constant values of both  
E(u)  and E(v) show that the method is working well. 
 

Time E(u)  E(v)  
3 0.824864 1.28885 
6 0.831176  1.29871  
9 0.841697  1.31515  
12 0.856426  1.33817  
15 0.875363 1.36776  
18 0.898509 1.39513 

 
Table 1 

 
    Following the stability analysis suggested by Tan and Boyd [23] , the wave solution is 
linearly stable only if the perturbation wave number α  is above the critical value 

)a 2(cα  2
0

b2
0
+=  ; otherwise the wave solution is unstable.  For the our chose of the 

constants       ,0   , 0 0.05  0.1  08.0 === αba , we find that cα =0.181108 ,  therefore, the 
wave solution in this case is unstable.  The amplitude of u  and v  undergoes oscillations 
between the near-uniform state and the one-hume state . 
 
 
3.3   Focusing Manakov system in two space variables 
      
    In order to develop a numerical simulation for solving the system (3)-(4) by the HPM 
in the region 0][t]yy[y]xx[xR RLRL >×<<×<<=  with its boundary R∂  which 
consists of the ordinates RLRL yx,yy,xx,xx ====  and the  axis 0t ≥ . According to 
the homotopy perturbation method, we construct following simple homotopies:          
              , 0 ]u  )2|v|  2|u| (  i)yyuxxu ( [-i ptu =+−++ q                                           (25)                       
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             0 ]  v)2|v|  2|u| (  i)yyvxx v( [-i pt v =+−++ q ,                                           (26)  
where [0,1]p∈ is an embedding  parameter, we use it  to expand the solutions in the 
following form: 

                 .  .  .3u3p2u2p1pu0ut)y,u(x, ++++=                                                  (27) 

                .  .  .3v3p2v2p1pv0vt)y,v(x, ++++=                                                    (28) 

The approximate solution can be obtained by setting 1p =  in eqs. (27) and (28): 
     .  .  .3u2u1u0ut)y,u(x, ++++= and   .  .  .3v2v1v0vt)y,v(x, ++++=         (29) 

Now substituting from (27) and (28) into (25) and (26) respectively, and equating the 
terms with the identical powers of p, we can obtain series of linear equations as follows: 

  , 0t)y,(x,0u   : 0p =                                                                                                    (30-i) 

         0t)y,(x,0v = ,                                                                                                     (30-ii)  

 , )
2

0v
2

0u (0u i)0yyu0xxu i(t)y,(x,1u   : 1p +++=                                           (31-i)         

         , )
2

0v
2

0u (0 vi)0yyv0xx vi(t)y,(x,1v +++=                                          (31-ii)  

  , )
2

0v
2

0u (1u i)1v0v21u0u 2(0u  i)1yyu1xxu ( it)y,(x,2u  : 2p +++++=     (32-i)       

     , )
2

0v
2

0u (1 vi)1v0v21u0u 2(0 vi)1yyv1xx vi(t)y,(x,2v +++++=  (32-ii)                

The solution of equation (30) using the following initial conditions [ 22]:  

 u(x,y,0) a (1 ε cos( 2α (x y))) , 0= − +  

 v(x,y,0) b (1 ε cos( 2α (x y))) .0= − +  

  Then,  solutions of (31) are:        

 

,  ]3) y) xα(2cos( 1- )(bq(a-) y) xα(2cos( 2[4t 0a i               

0
dt)]

2
0v

2
0u (0u i)0yyu0xx(u i [t)y,(x,1u

2
0

2
0

+++=

∫ +++=

+ εεα

t

   

2 2
0 0

2 2
v (x,y,t) [ i (v v ) i v ( u v )]dt1 0xx 0yy 0 0 0

0
2 3               i b t [4  cos( 2α( x y) )-q(a b )( -1  cos( 2α( x y) ) ]  .0

t

α ε ε+

= + + +∫

= + + +

 

 
By the same process we can find  the solution of (32), and all other terms.    To illustrate 
the advantages and the accuracy of the homotopy perturbation method for solving 
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focusing Manakov system in two space variable, we have applied the method and using 
the first order perturbation, i.e. the approximate solutions are  
           , )ty,x,(1u)ty,x,(0ut)y,U(x,t)y,u(x, +=≅                                                      (33) 

           v(x,y,t) V(x,y,t) v (x,y,t) v (x,y,t). 0 1≅ = +                                                            (34)  

We  evaluate the numerical solutions using the first order perturbation from (29) with the 
constants,   0.05 0.05  0.1  08.0    ,     ,0   , 0 ==== εαba , 1.0=q ,  0yx

LL
==  ,  

151y x
RR
== . The numerical results are represented in Figures (2,3) for the 

approximate solutions t)y,u(x,  and t)y,v(x, . The figures shows the behavior of the 
approximate solution at different time ,20,1510,5t =  respectively , from the top to 
bottom and from the left to right  in two figures.  We achieved a very good approximation 
for the solution of the system. It is evident that the overall errors can be made smaller by 
adding new terms of the iteration formulas. 
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Figure 2:  Long-time evolution of the wave solution |u(x, y, t)| 
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Figure 3:  Long-time evolution of the wave solution |v(x, y, t)|  
 
3.4. Conserved quantities in two space variable  
       
         In order to verify  whether the proposed methodology lead to higher accuracy, we 
will use the same procedure  as in section 3.2  we can emphasize that a good numerical 
scheme should have excellent long-time numerical behavior, as well as energy 
conservation property.  To monitor the accuracy of the homotopy perturbation method, 
we consider the following two conserved quantities for the fixed value  1150yy ==  , 

                ∫
−

=
S/2

2
0s/2

E(u) dx|t),yu(x, |        and     ∫
−

=
S/2

2
0s/2

E(v) dx| t),y v(x,|     

Where παπ 40)/2( ==s  ( for 0.05=α  ) is the spatial period of the solution [26]. 
Table 2 shows  E(u)  and E(v) for various times. The nearly constant values of both  E(u)  
and E(v) show that the method is working  well. 
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Time E(u)  E(v)  

3 0.802366 1.2537 
6 0.808204 1.26282 
9 0.817934 1.27802 

12 0.831556 1.29931 
15 0.849071 1.32667 
18 0.870478 1.36012 

 
Table 2 

   Following the stability analysis suggested by Tan and Boyd [23], the wave solution is 
linearly stable only if the perturbation wave number α  is above the critical value 

)a 2(cα  2
0

b2
0
+= ; otherwise the wave solution is unstable.  For the our chose of the 

constants       ,0   , 0 0.05  0.1  08.0 === αba , we find that cα =0.181108 ,  therefore, the 
wave solution in this case is unstable.  The amplitude of u  and v  undergoes oscillations 
between the near-uniform state and the one-hume state . 
 
4. Conclusions   
        
        In this work, we proposed homotopy perturbation method for solving the focusing 
Manakov system of coupled nonlinear Schrödinger equations in one and two space 
variables.  We achieved a very good approximation of the system by using first order of 
perturbation. A clear conclusion can be draw from the numerical results that the 
homotopy perturbation method provides highly accurate numerical solutions without 
spatial discretizations for nonlinear partial differential equations.  The accuracy of the 
method is verified by ensuring that the conserved quantities remain almost constant. 
Finally, we point out that, the approximate solutions t),(iv, t),(iu xx  are obtained 

according to the iterative equations by using Mathematica package (version 5). 
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 -13-

  مانكوف الغير خطىمانظ لحل طريقة هوموتوبي المثارة
 

 مانكوف الغير خطى مانظلحل  هوموتوبي المثارة طريقة تطويرتم  هذا البحث في

 من الفراغرتبطة وذلك في كل الغير خطية المالمكون من معادلات شرودنجر 

 ولا تحتاج  تتقارب بسرعة الطريقة أنهاهذهومن مميزات .  الثنائى الفراغ والأحادي

 لا تحتاج ألي تقسيم لأنها خطية وذلك الجبرية الغير حل نظام من المعادلات إلي

  وسهولةالنتائج العدية أظهرت قوة وفعالية. مناطق تعريف متغيرات المسألة

 ولقياس دقة الطريقة تم .رتبطة المعادلات الغير الخطية المالمعروضة لحلالطريقة 

  .  دائما ثابتةاي وجدت انهحساب الكميات المحافظة والت
  


